CSCI 1675, Fall 2025: Designing High-Performance
Network Systems

Office
Role Name Hours
Instructor Akshay Narayan akshayn@brown.edu TBD
TAs TBD
Description

How can we understand the performance of network systems and make them
faster? To explore this question, we will break it down into pieces, including
(i) how to define and measure a system’s performance, (ii) how to determine
what factors in the system’s design affect its performance, and (iii) how to use
this information to make the system faster. Through lectures, readings, and
hands-on programming projects, we will explore topics including throughput-
latency curves, tradeoffs between open and closed request generation, and con-
currency. Hands-on projects will involve modern Linux technologies such as
perf and io_uring, as well as modern microservice architecture tools such as
Kubernetes. The class will consist of lectures, short homework assignments
that reinforce lecture content, and 4 project assignments with programming
and technical writing components that explore these topics in greater detail.

Format

The course will consist of lectures with interactive discussion components, four
hands-on implementation projects, and three homework assignments involving
writing responses to readings.

Prerequisites

CS1670/2670, CS1680/2680, CS2690, CS1380, or graduate standing.

Components and Grading

Learning Goals

After taking this class, students will be able to measure, analyze, and improve
the performance of a network system. Further, students will know the purpose
of and be familiar with using the following tools, technologies, and APIs: perf,
flamegraphs, vectored 10, io_ uring, multitasking, container orchestration, and
distributed tracing. Students will further know the purpose of, but may not be
familiar with using the following tools: eBPF, RDMA, and DPDK.

akshayn@brown.edu

Course Materials

There are no expected costs. All readings will be open-access. The course staff
will provide computing resources to evaluate projects.

Attendance

Attending lectures is recommended (since lectures involve interactive compo-
nents) but not required. Lectures will be recorded for later viewing.

Course Projects: 65%

The largest component of this class is a series of four course projects. Each
project will involve an implementation task, an experimental evaluation task,
and a project writeup. Course staff will grade projects based on the correct-
ness of the implementation and experimental evaluation components, and the
clarity and completeness of the project writeup. Projects will be graded dur-
ing meetings with course staff, and students should be able to answer technical
questions and defend their project’s correctness usign quantitative evidence in
their writeup during these grading meetings.

Rust

Projects in this offering of 1675 will be implemented in Rust. Our colleagues at
Brown have recently published a great book to help students learn Rust; we ex-
pect that Chapter 4, “Ownership,” will be especially helpful for this class. There
are also great traditional resources such as The Rust Programming Language
book, the standard library documentation, and Rust by Example.

Homeworks: 35%

This class will also involve reading-based homework assignments. Students will
read a technical document that reinforces lecture content and answer questions
that evaluate their understanding. Homework assignments will be graded on
writing clarity and response correctness.

Time Breakdown

Students should expect to spend 3 hours per week in lecture, a further 3 hours
per week on homework assignments, and approximately 100 hours on the class
projects, for a total of at least 180 hours over the course of the semester.

Late Days

To conserve the course staff’s grading effort, projects should be completed on
time. However, in recognition of the need for some flexibility, students are al-
lowed three “project late days” to submit projects past their deadline with no

https://www.rust-lang.org/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/std/index.html
https://doc.rust-lang.org/stable/rust-by-example/

penalty, and one “homework late day” to submit homework assignments past
their deadline with no penalty. Project late days cannot be used for homework
assignments and vice versa. Late days cannot be used past the week the as-
signment is due in (i.e., the latest possible submission date for an assignment
is at 23:59 on the Friday of the week it is originally due). Assignments won’t
be accepted for grading beyond their last possible submission date or if no late
days remain. There is no credit for unused late days at the end of the semester.
Any fraction of a late day used counts as one late day. While weekends and Uni-
versity holidays don’t consume late days, note the above policy about the latest
possible due date of each assignment. If serious extenuating circumstances arise
after late days are exhausted, contact Akshay.

Collaboration and Academic Integrity Policy

Students should understand and follow the Brown Academic Code and the Code
of Student Conduct.

Additionally, specific to this course, we encourage working with other students
to build conceptual understanding and debug software issues. However, each
student is responsible for their own project implementation and writeup, and
their own homework response. Students must understand their submissions;
instructors will interview and quiz students about their answers as part of the
grading process to determine this.

For all class assignments, students must cite all sources (people, websites, papers,
etc.) that they consult as a part of their work. External sources include but
are not limited to previously published articles, blog posts, Stackoverflow or
similar sites, conversations with other people, etc. This policy is not meant to
discourage the use of external sources, but rather to codify a standard academic
practice. Be generous with citations.

Finally, by taking this class, you agree to never post solutions for any assign-
ments publicly.

Tentative Schedule

Key Dates

Dates are tentative. Changes will be announced in class.

Date Event

TBD HW 0: Evaluating Systems released
TBD Project 0: Woonsocket released
TBD HW 0 due

TBD End of shopping period

TBD Project 0 due

https://www.brown.edu/academics/college/degree/policies/academic-code
https://www.brown.edu/offices/student-conduct/code
https://www.brown.edu/offices/student-conduct/code

Date

Event

TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD

Project 1: Modern OS Interfaces released
HW 1: CI10K released

Project 1 due

Project 2: Concurrency released

HW 1 due

Project 2 due

HW 2: Microservices released

Project 3: Microservices released

HW 2 due

Project 3 due

Quick Links

e Week 0
o Week 1
o Week 2
e Week 3
o Week 4
e Week 5
e Week 6
o Week 7
o Week 8
e Week 9
e Week 10
o Week 11
o Week 12
o Week 13

‘Week 0

Class intro.

Week 1

What is performance?

e Day 1: Throughput vs latency
e Day 2: Open-loop and closed-loop request generation

Week 2

Instrumentation

e Day 1: How do we measure performance? perf, lamegraphs
e Day 2: Memory hierarchy and data structures

Week 3
10
e Day 1: Syscalls and 10, C10K problem, nonblocking APIs
e Day 2: Vectored 10 and io_ uring
Week 4
Kernel Extensions
e Day 1: University holiday. No class.
e Day 2: eBFP/XDP
Week 5
Kernel Bypass
e Day 1: RDMA
e Day 2: DPDK
Week 6
Concurrency
e Day 1: Threads and Coroutines, M:N model
e Day 2: Shared memory vs channels, Strong vs Weak scaling, Amdahl’s
law
Week 7
Scheduling
e Day 1: Preemptive vs Cooperative multitasking
e Day 2: Work stealing
Week 8
Isolation
e Day 1: VMs and containers
e Day 2: RPCs and microservices
Week 9

No class.

Week 10
Queueing Theory
e Day 1: Backpressure

e Day 2: Load Balancing

Week 11
Caching and Storage

e Day 1: Storage
e Day 2: Caching

Week 12
The Tail at Scale

e Day 1: Livelock and deadlock
e Day 2: Distributed tracing

Week 13
Cloud Computing

e Day 1: Cluster schedulers, stragglers
o Day 2: Resource Disaggregation

Registration

Due to constrained TA resources, this offering of CS 1675 will be capped. Stu-
dents requesting an override must (a) have fulfilled the prerequisites and (b)
complete course assignments during shopping period. All registered students
will be responsible for completing all course assignments regardless of when
they register for the class.

Auditing

If you wish to audit the class, note that the aforementioned limits on TA re-
sources still apply, so we won’t be able to offer auditors grading support or
support in office hours.

Accessibility and Accommodations Statement

Brown University is committed to full inclusion of all students. Please inform
me early in the term if you may require accommodations or modification of
any of course procedures. You may speak with me after class, during office
hours, or by appointment. If you need accommodations around online learning
or in classroom accommodations, please be sure to reach out to Student Ac-
cessibility Services (SAS) for their assistance (sas@brown.edu, 401-863-9588).
Undergraduates in need of short-term academic advice or support can contact
an academic dean in the College by emailing college@brown.edu. Graduate

sas@brown.edu
tel:401-863-9588
college@brown.edu

students may contact one of the deans in the Graduate School by emailing
graduate_school@brown.edu.

graduate_school@brown.edu

	CSCI 1675, Fall 2025: Designing High-Performance Network Systems
	Description
	Format
	Prerequisites

	Components and Grading
	Learning Goals
	Course Materials
	Attendance
	Course Projects: 65%
	Rust

	Homeworks: 35%
	Time Breakdown
	Late Days
	Collaboration and Academic Integrity Policy

	Tentative Schedule
	Key Dates
	Quick Links
	Week 0
	Week 1
	Week 2
	Week 3
	Week 4
	Week 5
	Week 6
	Week 7
	Week 8
	Week 9
	Week 10
	Week 11
	Week 12
	Week 13

	Registration
	Auditing

	Accessibility and Accommodations Statement

